Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Encyclopedia of Infection and Immunity ; 3:60-71, 2022.
Article in English | Scopus | ID: covidwho-2293387

ABSTRACT

Urogenital schistosomiasis is a neglected tropical disease affecting approximately a quarter of a million people in the world. A lot of research on the disease has focused on school age children with very limited studies in preschool age children (PSAC). Schistosome control programs targeting PSAC should take into consideration other factors affecting this age group such as malnutrition, co-infections, underlying inflammatory conditions as well as the fact that this is the age group receiving childhood vaccinations. Praziquantel is the only drug currently being used for the treatment of schistosomiasis. However, there needs to be more research on the appropriate dosage and safety for the PSAC. Allergic conditions have been shown to be less prevalent in areas where parasitic infections are prevalent. When carrying out mass drug administration (MDA) programs considerations on the effects of treatment on allergy should be taken. COVID-19 has affected MDA programs and continues to do so. The lessons learnt and effects of COVID-19 on schistosomiasis need to be investigated. © 2022 Elsevier Inc. All rights reserved.

2.
Microorganisms ; 10(12)2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2163515

ABSTRACT

The gut microbiome has been shown to play a critical role in maintaining a healthy state. Dysbiosis of the gut microbiome is involved in modulating disease severity and potentially contributes to long-term outcomes in adults with COVID-19. Due to children having a significantly lower risk of severe illness and limited sample availability, much less is known about the role of the gut microbiome in children with COVID-19. It is well recognized that the developing gut microbiome of children differs from that of adults, but it is unclear if this difference contributes to the different clinical presentations and complications. In this review, we discuss the current knowledge of the gut microbiome in children with COVID-19, with gut microbiome dysbiosis being found in pediatric COVID-19 but specific taxa change often differing from those described in adults. Additionally, we discuss possible mechanisms of how the gut microbiome may mediate the presentation and complications of COVID-19 in children and the potential role for microbial therapeutics.

3.
Aims Allergy and Immunology ; 6(3):170-187, 2022.
Article in English | Web of Science | ID: covidwho-2044069

ABSTRACT

The components of the immune system develop in utero and like a computer, some components are immediately functional (the innate components) but other components must learn the programs and details necessary to function (antigen adaptive components). Like other systems, including military and municipal, the innate and antigen specific components develop into an immune system that helps maintain and surveil the other body processes and systems for aberrations, provide surveillance and protection of the mucoepithelial borders and protection from microbial invasion. Inability, excesses, or errors in these processes cause disease. Aging of the immune system brings immunosenescence, inflammaging, more errors, and decreased surveillance which increases risk for new infections (e.g. COVID-19, influenza), recurrence of latent infections, cancer and autoimmune and inflammatory diseases. With greater understanding of the surveillance, effector and regulatory deficits upon aging, better therapies can be developed.

4.
Cell Rep Med ; 3(9): 100728, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-1984241

ABSTRACT

There is a need for safe and effective platform vaccines to protect against coronavirus disease 2019 (COVID-19) and other infectious diseases. In this randomized, double-blinded, placebo-controlled phase 2/3 trial, we evaluate the safety and efficacy of a multi-dose Bacillus Calmette-Guérin (BCG) vaccine for the prevention of COVID-19 and other infectious disease in a COVID-19-unvaccinated, at-risk-community-based cohort. The at-risk population is made of up of adults with type 1 diabetes. We enrolled 144 subjects and randomized 96 to BCG and 48 to placebo. There were no dropouts over the 15-month trial. A cumulative incidence of 12.5% of placebo-treated and 1% of BCG-treated participants meets criteria for confirmed COVID-19, yielding an efficacy of 92%. The BCG group also displayed fewer infectious disease symptoms and lesser severity and fewer infectious disease events per patient, including COVID-19. There were no BCG-related systemic adverse events. BCG's broad-based infection protection suggests that it may provide platform protection against new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and other pathogens.


Subject(s)
COVID-19 , Communicable Diseases , Diabetes Mellitus, Type 1 , Mycobacterium bovis , Adult , BCG Vaccine/therapeutic use , COVID-19/prevention & control , Diabetes Mellitus, Type 1/drug therapy , Humans , SARS-CoV-2 , Vaccination
5.
Elife ; 102021 02 02.
Article in English | MEDLINE | ID: covidwho-1513045

ABSTRACT

Evolutionary medicine argues that disease can arise because modern conditions do not match those in which we evolved. For example, a decline in exposure to commensal microbes and gastrointestinal helminths in developed countries has been linked to increased prevalence of allergic and autoimmune inflammatory disorders (the hygiene hypothesis). Accordingly, probiotic therapies that restore 'old friend' microbes and helminths have been explored as Darwinian treatments for these disorders. A further possibility is that loss of old friend commensals also increases the sterile, aging-associated inflammation known as inflammaging, which contributes to a range of age-related diseases, including cardiovascular disease, dementia, and cancer. Interestingly, Crowe et al., 2020 recently reported that treatment with a secreted glycoprotein from a parasitic nematode can protect against murine aging by induction of anti-inflammatory mechanisms. Here, we explore the hypothesis that restorative helminth therapy would have anti-inflammaging effects. Could worm infections provide broad-spectrum protection against age-related disease?


Subject(s)
Helminthiasis/immunology , Immunosenescence , Inflammation/immunology , Aging , Animals , Autoimmune Diseases/physiopathology , Helminths , Host-Parasite Interactions/immunology , Humans
6.
Evol Med Public Health ; 2020(1): 234-248, 2020.
Article in English | MEDLINE | ID: covidwho-1109223

ABSTRACT

The novel virus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and the associated Coronavirus Disease 2019 (COVID-19) represent a pathogen to which human beings have limited to no evolved immune response. The most severe symptoms are associated with overactive inflammatory immune responses, leading to a cytokine storm, tissue damage, and death, if not balanced and controlled. Hypotheses within Evolutionary Medicine, including the Hygiene/Old Friends Hypothesis, provide an important lens through which to understand and possibly control this overactive immune response. In this article, we explore the role that infection with soil-transmitted helminths (STHs; i.e. intestinal parasitic worms) may play in dampening SARS-CoV-2 symptoms and mitigating the worst COVID-19 outcomes. Specifically, STHs stimulate the immunosuppressive and regulatory T-helper 2 (TH2) branch of the immune system, which decreases ACE2-receptor expression (i.e. receptors SARS-CoV-2 uses to infect host cells), balances the inflammatory TH1/TH17 branches of the immune system triggered by SARS-CoV-2 infection, and reduces inflammation through the release of anti-inflammatory/regulatory cytokines. Because STHs are common and affect the most vulnerable and marginalized members of society, it is especially important to consider how these parasites may impact COVID-19 outcomes. Areas experiencing endemic STH infections are often characterized by a lack of preventative infrastructure and medical care, which may further exacerbate risk of SARS-CoV-2 infection and COVID-19 development. For this reason, we also explore biocultural factors that contribute to disease outcomes for both SARS-CoV-2 and STH infections. Biocultural and Evolutionary Medicine perspectives on COVID-19 are crucial for understanding the global impact of the disease. Lay summary: An evolutionary perspective is required to understand the global impact and various presentations of COVID-19. We consider how coinfection with soil-transmitted helminths (common parasitic worms that coevolved with humans) may suppress inflammatory immune activity, thereby potentially reducing COVID-19 disease severity. Structural and lifestyle factors shaping coinfection patterns are also discussed.

7.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: covidwho-1039673

ABSTRACT

The COVID-19 pandemic has the potential to affect the human microbiome in infected and uninfected individuals, having a substantial impact on human health over the long term. This pandemic intersects with a decades-long decline in microbial diversity and ancestral microbes due to hygiene, antibiotics, and urban living (the hygiene hypothesis). High-risk groups succumbing to COVID-19 include those with preexisting conditions, such as diabetes and obesity, which are also associated with microbiome abnormalities. Current pandemic control measures and practices will have broad, uneven, and potentially long-term effects for the human microbiome across the planet, given the implementation of physical separation, extensive hygiene, travel barriers, and other measures that influence overall microbial loss and inability for reinoculation. Although much remains uncertain or unknown about the virus and its consequences, implementing pandemic control practices could significantly affect the microbiome. In this Perspective, we explore many facets of COVID-19-induced societal changes and their possible effects on the microbiome, and discuss current and future challenges regarding the interplay between this pandemic and the microbiome. Recent recognition of the microbiome's influence on human health makes it critical to consider both how the microbiome, shaped by biosocial processes, affects susceptibility to the coronavirus and, conversely, how COVID-19 disease and prevention measures may affect the microbiome. This knowledge may prove key in prevention and treatment, and long-term biological and social outcomes of this pandemic.


Subject(s)
COVID-19/microbiology , Hygiene Hypothesis , Microbiota , Aged , Anti-Infective Agents/therapeutic use , COVID-19/mortality , Eating , Female , Humans , Infant , Infection Control/methods , Male , Microbiota/drug effects , Physical Distancing , Pregnancy
8.
Immunobiology ; 226(1): 152052, 2021 01.
Article in English | MEDLINE | ID: covidwho-988079

ABSTRACT

The century-old tuberculosis vaccine BCG has been the focus of renewed interest due to its well-documented ability to protect against various non-TB pathogens. Much of these broad spectrum protective effects are attributed to trained immunity, the epigenetic and metabolic reprogramming of innate immune cells. As BCG vaccine is safe, cheap, widely available, amendable to use as a recombinant vector, and immunogenic, it has immense potential for use as an immunotherapeutic agent for various conditions including autoimmune, allergic, neurodegenerative, and neoplastic diseases as well as a preventive measure against infectious agents. Of particular interest is the use of BCG vaccination to counteract the increasing prevalence of autoimmune and allergic conditions in industrialized countries attributable to reduced infectious burden as described by the 'hygiene hypothesis.' Furthermore, BCG vaccination has been proposed as a potential therapy to mitigate spread and disease burden of COVID-19 as a bridge to development of a specific vaccine and recombinant BCG expression vectors may prove useful for the introduction of SARS-CoV-2 antigens (rBCG-SARS-CoV-2) to induce long-term immunity. Understanding the immunomodulatory effects of BCG vaccine in these disease contexts is therefore critical. To that end, we review here BCG-induced immunomodulation focusing specifically on BCG-induced trained immunity and how it relates to the 'hygiene hypothesis' and COVID-19.


Subject(s)
BCG Vaccine/immunology , BCG Vaccine/therapeutic use , COVID-19/immunology , COVID-19/therapy , Hygiene Hypothesis , Immunity, Innate , COVID-19/virology , Humans , Immunomodulation
9.
Aging Dis ; 11(6): 1339-1344, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-955203

ABSTRACT

India has witnessed a high number of COVID-19 cases, but mortality has been quite low, and most cases have been asymptomatic or mild. In early April, we had hypothesized a low COVID-19 mortality in India, based on the concept of cross-immunity. The presence of cross-immunity is presumed to lead to a milder course of disease and allow the time necessary for the development of adaptive immunity by the body to eliminate the virus. Evidence supporting our hypothesis has started showing up. Multiple studies have shown the generation of different T cell subsets and B cells responding to epitopes of viral proteins, especially of the spike protein, as a part of adaptive immunity against SARS-CoV-2. Cross-reactive T-cells have been demonstrated in patients who have been previously exposed to endemic coronaviruses. The interplay of cross-immunity and herd immunity is apparent in the COVID-19 scenario in India from the presence of a large number of asymptomatic or mild cases, a low infection-fatality ratio and a generally flat curve of percentage positivity of cases with respect to total testing, both in periods of strict lock-down and step-wise unlocking. It seems that cross-immunity resulted in faster generation of herd immunity. Although the initial restrictive measures such as lockdown prevented the rapid spread of the outbreak, further extension of such measures and overly expensive ones such as enhanced testing in India will result in a huge burden on the health economics as well as the society. Hence, we propose a restructuring of the health services and approach to COVID-19. The restructured health services should move away from indiscriminate testing, isolation and quarantine, and instead, the emphasis should be on improving facilities for testing and management of only critical COVID cases and the replacement of complete lockdowns by the selective isolation and quarantine of susceptible persons such as the aged and those with co-morbidities. In the process of describing India-specific plans, we emphasize why the development of country-specific plans for tackling epidemics is important, instead of adopting a "one policy fits all" approach.

SELECTION OF CITATIONS
SEARCH DETAIL